An Excellent Addition to Your Library!

Released: November 2012

Developing and Applying Biologically-Inspired Vision Systems: Interdisciplinary Concepts

Marc Pomplun (University of Massachusetts Boston, USA) and Junichi Suzuki (University of Massachusetts - Boston, USA)

When comparing machine vision systems to the visual systems of humans and animals, there is much to be learned in terms of object segmentation, lighting invariance, and recognition of object categories. Studying the biological systems and applying the findings to the structure of computational vision models and artificial vision systems aims to be an essential approach of advancing the field of machine vision.

Developing and Applying Biologically-Inspired Vision Systems: Interdisciplinary Concepts provides interdisciplinary research which evaluates the performance of machine visual models and systems in comparison to biological systems. Blending the ideas of current scientific knowledge and biological vision, this collection of new ideas intends to inspire approaches and cross-disciplinary research to applications in machine vision.

Topics Covered:

• Behavioral Data
• Computational Models
• Human Visual System
• Neuroimaging
• Technical Applications in Vision
• Vision Systems

Marc Pomplun is a Professor of Computer Science at the University of Massachusetts Boston. In 1998, he received a Ph.D. in Computer Science (Dr. rer. nat.) from Bielefeld University in Germany and the University’s “Best Dissertation in 1998” award. He subsequently conducted research as a post-doctoral fellow in the Department of Psychology at the University of Toronto and as a research scientist at the Centre for Vision Research, York University, Canada. In 2002, he joined the University of Massachusetts Boston, where he founded the Visual Attention Laboratory and initiated the Talks in Cognitive Science (TICS) colloquium series. His research focuses on human vision, particularly visual attention, and how insight into biological vision can be applied to the fields of computer vision and human-computer interaction. In 2007, he received the Outstanding Achievement Award for Scholarship from the College of Science and Mathematics. By the time of his promotion to Professor in 2012, he had made more than 160 contributions to scientific journals and conferences and obtained research funding as a PI and Co-PI from the National Institutes of Health, the National Science Foundation, and the US Department of Education.
Section 1: Visual Attention

Chapter 1
Influence of Movement Expertise on Visual Perception of Objects, Events and Motor Action:
Essig Kai (Bielefeld University, Germany)
Strogan Oleg (Bielefeld University, Germany)
Ritter Helge (Bielefeld University, Germany)
Schack Thomas (Bielefeld University, Germany)

Chapter 2
Computational Approaches to Measurement of Visual Attention:
Haspel Nurit (University of Massachusetts Boston, USA)
Shell Alon (University of Massachusetts Medical School, USA)
Deutsch Curtis K. (University of Massachusetts Medical School, USA)

Chapter 3
Task, Timing, and Representation in Visual Object Recognition
Rothenstein Albert L. (York University, Canada)

Chapter 4
Attention in Stereo Vision:
Bruce Neil D. B. (University of Manitoba, Canada)
Tsotsos John K. (York University, Canada)

Section 2: Binocular Vision

Chapter 5
Local Constraints for the Perception of Binocular 3D Motion
Lages Martin (University of Glasgow, UK)
Heron Suzanne (University of Glasgow, UK)
Wang Hongfang (University of Glasgow, UK)

Chapter 6
Modeling Binocular and Motion Transparency Processing by Local Center-Surround Interactions
Raudies Florian (Boston University, USA & Center of Excellence for Learning in Education, Science, and Technology (CELEST), USA & Center for Computational Neuroscience and Neural Technology (CompNet), USA)
Neumann Heiko (Institute of Neural Information Processing, University of Ulm, Germany)

Chapter 7
Early Perception-Action Cycles in Binocular Vision
Salustani Silvio P. (DIBRIS – University of Genoa, Italy)
Solari Fabio (DIBRIS – University of Genoa, Italy)
Canessa Andrea (DIBRIS – University of Genoa, Italy)
Chessa Manuela (DIBRIS – University of Genoa, Italy)
Gibaldi Agostino (DIBRIS – University of Genoa, Italy)

Section 3: Visual Cortical Structures

Chapter 8
The Roles of Endstopped and Curvature Tuned Computations in a Hierarchical Representation of 2D Shape
Rodríguez-Sánchez Antonio J. (University of Innsbruck, Austria)
Tsotsos John K. (York University, Canada)

Chapter 9
A Measure of Localization of Brain Activity for the Motion Aperture Problem Using Electroencephalograms
Hayashi Isao (Kansai University, Japan)
Toyoshima Hitoshi (Japan Technical Software, Co., Ltd., Japan)
Yamanot Takahiro (Hokkai Gakuen University, Japan)

Chapter 10
Mathematical Foundations: Modeled after Neo-Cortex for Discovery and Understanding of Structures in Data
Kadambe Shubha (Rockwell Collins, USA)

Section 4: Artificial Vision Systems

Chapter 11
Visual Behavior Based Bio-Inspired Polarization Techniques in Computer Vision and Robotics
Shabayek Abd El Rahman (Université de Bourgogne, France)
Motel Olivier (Université de Bourgogne, France)
Foti David (Université de Bourgogne, France)

Chapter 12
Implementation and Evaluation of a Computational Model of Attention for Computer Vision
Da Silva Matthieu Pereira (RCCyN – University of Nantes, France)
Courbhoulay Vincent (L3i – University of La Rochelle, France)

Chapter 13
Implementation of Biologically Inspired Components in Embedded Vision Systems
Ngau Christopher Wing Hong (The University of Nottingham, Malaysia)
Ang Li-Minn (Edith Cowan University, Australia)
Seng Kah Phooi (Sunway University, Malaysia)

Chapter 14
Replicating the Role of the Human Retina for a Cortical Visual Neuroprosthesis
Romeros Samuel (University of Granada, Spain)
Morillas Christian (University of Granada, Spain)
Martinez Antonio (University of Alicante, Spain)
del Pino Beguelo (University of Granada, Spain)
Pelayo Francisco (University of Granada, Spain)
Fernández Eduard (University Miguel Hernández, Spain)

Order Your Copy Today!